Nombre dérivé

I Taux de variation

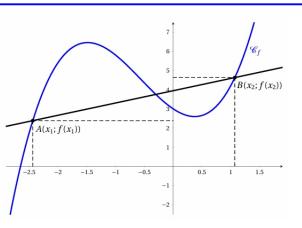
Définition

On considère la fonction f défini sur un ensemble I et deux nombres réels distincts x_1 et x_2 de I.

On appelle taux de variations de f entre x_1 et x_2 le nombre

$$\tau = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 ou encore $\frac{\Delta y}{\Delta x}$

Ce taux de variations correspond au coefficient directeur de la droite passant par les points de coordonnées $(x_1; f(x_1))$ et $(x_2; f(x_2))$.



Exemple:

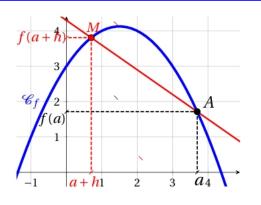
Soit f la fonction carrée $f: x \longmapsto x^2$.

Le taux de variation de f entre a=1 et b=3 est égal à :

$$\frac{f(b) - f(a)}{b - a} = \frac{3^2 - 1^2}{3 - 1} = \frac{8}{2} = 4$$

Définition

Le taux de variation de la fonction f au point A d'abscisse a est le nombre $\frac{f(a+h)-f(a)}{h}$.



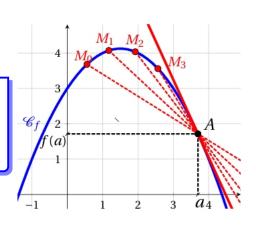
On note cette quantité de plusieurs manière différente :

- En mathématiques, on utilise généralement $\tau(a)$.
- Les physiciens lui préfèrent la notation $\left(\frac{\Delta y}{\Delta x}\right)_a$ qui a l'avantage d'être plus « parlante ».

II Équation de tangente

Définition

La tangente à la courbe C_f représentative de la fonction f au point A d'abscisses a est la droite passant par le point A, position limite des sécantes à la courbe C_f passant par A.



Nombre dérivée

Définition

Soit f une fonction définie sur un intervalle I contenant a.

Dire que f est dérivable en a, c'est dire que lorsque h se rapproche de 0, le taux de variation entre a et a+h se rapproche d'une valeur ℓ , ce que l'on note :

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=\ell \qquad \qquad \ell \text{ est appelé le nombre dérivé de } f \text{ en } a$$

Pour désigner le nombre dérivé d'une fonction f en un point a, les mathématiciens emploient la notation f'(a) due au mathématicien français Joseph-Louis LAGRANGE (1736 – 1813).

Les physiciens privilégient la notation différentielle introduite, en 1684, par le mathématicien et philosophe allemand Gottfried Wilhelm LEIBNIZ (1646-1716), dans son traité « Nouvelle méthode pour chercher les maxima, les minima, ainsi que les tangentes ...».

Par exemple, la dérivée de la vitesse par rapport au temps est noté $\frac{dv}{dt}$

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 5x + 3$.

Montrons que f est dérivable en 2.

Calculons le taux de variations entre 2 et
$$2+h$$
: $\frac{f(a+h)-f(a)}{h}=\frac{f(2+h)-f(2)}{h}$

Pour calculer ce taux de variations, on a besoin de f(2+h) et de f(2).

$$f(2) = 2^2 - 5 \times 2 + 3$$
 $f(2+h) = (2+h)^2 - 5(2+h) + 3$

$$f(2) = 4 - 10 + 3$$
 $f(2+h) = 4 + 4h + h^2 - 10 - 5h + 3$

$$f(2) = -3 f(2+h) = h^2 - h - 3$$

$$\frac{f(a+h)-f(a)}{h} = \frac{f(2+h)-f(2)}{h} = \frac{h^2-h-3-(-3)}{h} = \frac{h^2-h}{h} = h-1$$

 $\mathrm{Donc}:$

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} h - 1 = -1$$

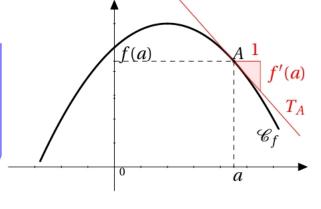
Donc f est dérivable en 2 et f'(2) = -1.

Équation de la tangente

Définition

Soit f une fonction dérivable en a, C_f sa courbe représentative et A le point de C_f d'abscisse a.

La tangente à la courbe C_f au point A est la droite passant par le point A et dont le coefficient directeur est f'(a).



Propriété

Soit f une fonction dérivable en a, C_f sa courbe représentative et A le point de C_f d'abscisse a. La tangente T_A en A à C_f a pour équation :

$$T_A: y = f'(a)(x - a) + f(a)$$

Soit f la fonction définie sur \mathbb{R} par $f(x)=x^2-5x+3$. Déterminons cette fois l'équation de la tangente en 2. $f'(a)(x-a)+f(a)=f'(2)(x-2)+f(2)=-1\times(x-2)-3=-x+2-3=-x-1$ L'équation réduite de la tangente en 2 est y=-x-1.

